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Final Report
Wavelets and neural networks
AFOSR grant number: F49620-97-1-0211
April 1, 1997 — December 31, 1999

1. Objectives

The research supported by this grant is a continuation of our research,
supported by AFOSR grant F49620-93-1-0150 (February 15, 1993- July 15,
1996), regarding the approximation properties of neural networks. We had
noticed several similarities in the theoretical aspects of wavelets and neural
networks. The objective of the current project is to investigate these simi-
larities in further detail.

2. Background

During our previous work, we had established a very close connection
between polynomial approximation and approximation by neural networks.
In fact, we had developed a unified theory of the approximation properties
of neural networks, radial basis function (RBF) networks, and gencralized
regularization networks. Our networks provided an optimal approximation
to a class of functions, where the only known a priori assumption was the
number of continuous derivatives. The networks did not require any training
in the classical sense, but were given explicitly in terms of the coeflicients of
the target function in certain orthogonal zxpansions. Our current objectives
are the following.

e Modify the formulas for the networks, so that the networks can be
obtained in terms of the values of the target function at judiciously
chosen points.

e Develop polynomial wavelets with an eventual objective of integrating
these with the theory of “generalized translation networks” which we
had previously developed.

3. Accomplishments

The research on this project resulted in 13 publications. In addition, I
gave 23 invited lectures in many different countries.
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In order to accomplish the objective (a) above, we introduced in [1] cer-
tain polynomial operators, similar to the well known de la Vallee Poussin
operators in the theory of trigonometric approximation. In addition to the
properties of the classical operators, these have the added advantage that
their computation involves only the values of the function at ine nodes of
classical orthogonal polynomials, in particular, the J acobi and Freud poly-
nomials. In [1] and [2], we studied the boundedness of these operators in
various norms. An interesting application of these bounds is that the supre-
mum norm of a polynomial over a continuous interval is shown to be of the
same order of magnitude as the maximum absolute value of this polynomial
at these zeros. '

As an application of this theory and our previous work, we demonstrated
in [3] how generalized translation networks can be developed to yield an op-
timal approximation to functions in the Sobolev classes, knowing only the
values of the function at nodes obtained from the zeros of orthogonal poly-
nomials. From a different point of view, these nodes provide the “correct”
choice of nodes for universal approximation of a Sobolev class in active learn-
ing environment.

In [4], we report on our experiments on the calibration of a degraded
phased array antenna using my previous ideas on the theory of neural net-
works for function approximation. In many situations, the experiments re-
flect a 50% to 100% improvement on prior work conducted by Southall et.
al. at Hanscom Air Force Base.

Next, we reformulated the problem of multiple source direction finding
using phased array antennas as the problem of finding the lo:ation of the
discontinuities of certain derivatives (singularities of differert orders) of a
function, given its coefficients in the Fourier or Chebyshev polynomial ex-
pansion. The classical, compactly supported wavelets are not suitable for
this task, partly because their construction requires the knowledge of the
corresponding wavelet coefficients, and partly because of inherent theoretical
limitations.

In [5], we gave a very general construction of a large class of such polyno-
mial frames which utilize directly the Chebyshev coefficients, and are free of
the above limitations. Our frames can be defined using an arbitrary system
of orthogonal polynomials. The frame bounds in the least squares sense are
independent of the system of orthogonal polynomials used. In the case of
Jacobi polynomials (Chebyshev polynomials in particular), our results in [1},
[2] are used to establish frame bounds also in the uniform and other norms.
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The available multiplier theorems do not apply in this case; new ideas were
essential. Our polynomial frames are able to simultaneously detect singu-
larities of different orders. We have given a precise quantitative description
connecting the “largeness” of the frame coefficients and the order and lo-
cation of the singularities. Applied to the multiple source direction finding
problem, our methods appear to be remarkably stable under noise.

In [6], we used complex analytic techniques to obtain yet another poly-
nomial operator for the detection of singularities in a function, given its
Chebyshev coefficients. Although these operators are not frame operators,
they have much sharper localization properties; their values decay exponen-
tially rapidly as we move away from the singularities.

During our research on polynomial frames, we became aware of several
other applications of the theme which we were developing. In [7], we carried
out a very general study of periodic convolution transforms for the detection
of singularities of a periodic function, knowing finitely many of its Fourier
coefficients. Our theory enables us to compare a variety of known periodic
wavelets, as well as to construct new frames and wavelets with different
desired properties. We also constructed “build-up” frames, based on random
samples of the target functions. In classical wavelet theory, one starts with a
large number of data, and compresses this information into a small number
of large wavelet coefficients. Our objective in the construction of the build-
up frames is to start with a small number of samples, and then enlarge this
data as needed to build higher and higher degree frames, until the detection
of singularities is accomplished with a desired accuracy. As before, the same
theory can also be used to modify our earlier construction of neural networks
so as to utilize incremental amounts of random samples to increase the size
of the network as needed to achieve a desired order of approximation.

In.[8], we constructed build-up frames based on a discrete orthogonal poly-
nomial system. This construction was motivated by applications in quantum
mechanics, pointed out to us by a Russian physicist.

We next turned our attention to the approximation of zonal function
networks on the sphere. Our objective was to give results analogous to our
constructions of neural networks, but the form of the neural networks is
different for the sphere: one does not allow thresholds, and the weights are
limited to the sphere. In [10], we constructed zonal function networks that
provide an optimal order of approximation to a large class of function spaces
defined in terms of the Beltrami operator on the sphere. We have given
explicit formulas to “train” these networks using scattered data on the sphere
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in a coordinate-free manner.

The paper [9] develops certain important and technical quadrature for-
mulas based on scattered data on the sphere. These quadrature formulas
play a crucial role in [10] and [7].

The paper [11] is an invited survey paper on our work on neural networks.
A more extended survey is given in a five lecture invited tutorial we gave
during an international conference on wavelets and related topics in Delhi,
India [13]. The paper [12] surveys our work and other related work on the
zonal function network approximation on the sphere.

4. Personnel supported

Hrushikesh N. Mhaskar, PI.
5. Technical Publications

1. Bounded quasi-interpolatory polynomial operators, Journal of Approx-
imation Theory, 96 (1999), 67-85. (With J. Prestin).

2. On Marcinkiewicz- Zygmund-type inequalities, in “Approximation the-
ory: in memory of A. K. Varma”, (N. K. Govil, R. N. Mohapatra,
Z. Nashed, A. Sharma, and J. Szabados Eds.), Marcel Dekker, 1998,
pp.389-404. (With J. Prestin).

3. On a choice of sampling nodes for optimal approzimation of smooth
functions by generalized translation networks, in “Artificial Neural Net-
works, Conference Publication No. 440” (IEE), 1997, pp. 210-215.
(With J. Prestin).

4. Neural beam-steering and direction finding, in “Neural Networks in En-
gineering Systems”, (A.-B. Bulsari and S. Kallio Eds.), Royal Institute
of Technology, Stockholm, 1997, pp. 269-272. (With H. Southall).

5. Polynomial frames for the detection of singularities, in “Wavelet Analy-
sis and Multiresolution Methods” (Ed. Tian-Xiao He), Lecture Notes
in Pure and Applied Mathematics, Vol. 212, Marcel Decker, 2000,
273-298. (With J. Prestin).

6. On a sequence of fast decreasing polynomial operators, in “Applications
and Computation of Orthogonal Polynomials” (Eds. W. Gautschi,
G.H. Golub, G. Opfer) Internat. Ser. Numer. Math., Birkhéuser,
Basel, 1999, 165-178. (With J. Prestin).




7. On the detection of singularities of a periodic function, Advances in
Computational Mathematics, 12 (2000), 95-131 (With J. Prestin).

8. On a build-up polynomial frame for the detection of singularities, in
“Self-Similar Systems” (V. B. Priezzhev and V. P. Spiridonov Eds.),
Joint Institute for Nuclear Research, Dubna, Russia, 1999, pp. 98-109.
(With J. Presiin).

9. Quadrature Formulas on Spheres Using Scattered Data, To appear in
Mathematics of Computation. (With F. J. Narcowich and J. D. Ward).

10. Approzimation Properties of Zonal Function Networks Using Scattered
Data on the Sphere, Advances in Computational Mathematics, 11 (1999),
121-137 (With F. J. Narcowich and J. D. Ward).

11. Approzimation of smooth functions by neural networks, in “Dealing
with complexity: A neural network approach”, (K. Warwick et. al.
eds), “Perspectives in Neural Computing”, Springer Verlag, London,
1998, pp.189-204.

12. Representing and analyzing scattered data on the sphere, To appear in
“Multivariate approximation and applications” (A. Pinkus, D. Levi-
atan, N. Dyn, and D. Levin Eds.), Cambridge University Press, Cam-
bridge. (With F. J. Narcowich and J. D. Ward).

13. Approzimation theory and neural networks, accepted for publication in
»Wavelet Analysis and Applications, Proceedings of the international
workshop in Delhi, 1999” (P. K. Jain, M. Krishnan, H. N. Mhaskar J.
Prestin, and D. Singh Eds.), Narosa Publishing, New Delhi, India.

6. Interactions

I gave the following invited lectures as indicated.

1. Ohio State University, Columbus, Ohio, April 1997.
Oak Ridge National Laboratory, Oak Ridge, Tennessee, April 1997.
University of Kentucky, Lexington, Kentucky, April 1997.
Technishe Universitatt, Munich, Germany, July 1977.

Katholische Universitatt, Eichstaett, Germany, July 1977.
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International symposium on Approximation Theory, Nashville, Ten-
nessee, January, 1998. (Also organized and chaired a special session on
neural networks.)
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9.

Oberwolfach, Germany, March, 1998.
Montecateni, Italy, June, 1998.
Eichstaett, Germany, June, 1998.

10. Dortmund, Germany, July, 1998.

11. Hohenheim, Germany, July, 1998.

12. Goettingen, Germany, July, 1998.

13. Ukrainian Academy of Sciences, Kiev, Ukraine, July, 1998.

14. International Symposium on Self-similar systems, Dubna, Russia, Au-
gust, 1998.

15. International Conference on signal conference, Eilat, Israel, September,
1998.

16. Special session on Wavelet Analysis, American Mathematical Society,
Urbana-Champaign, Illinois, March, 1999.

17. Air Force Institute of Technology, Dayton, Ohio, March, 1999.

18. International Conference honoring R. S. Varga, Kent, Ohio, March,
1999. '

19. International Workshop on Orthogonal Polynomials, Ballenstaedt, Ger-
many, April, 1999.

20. International Conference on Approximation Theory, Kiev, Ukraine,
May, 1999.

21. International Conference on Computational Mathematics, Oxford, U.K.,
July, 1999.

22. Aston University, Birmingham, U. K., July, 1999.

23. International Workshop on Wavelet Analysis and related topics, Delhi,
India, August, 1999.
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